ECE 172A: Introduction to Image Processing Directional Image Analysis and Processing

Rahul Parhi Assistant Professor, ECE, UCSD

Winter 2025

Outline

- Mathematical Foundations
 - Rotations and the Fourier Transform
 - Radon Transform
 - Rotation of Polynomials
 - Directional Derivatives
- Local Directional Analysis
 - Structure Tensor
- Steerable Filters
 - Derivative-Based Filters
- Edge Detector: Revisited

Directionality in Image Processing

- Importance of directional cues
 - Edges, ridges, patterns, texture
 - Visual perception is orientation-sensitive
 - Neurons in the primary visual cortex have orientation selectivity

(Hubel and Wiesel, 1958)

- Invariant Processing and Feature Detection
 - Invariant operators: Gradient magnitude, Laplacian, . . .

- Computational challenges
 - Selectivity to orientation
 - Steerability (orientation can be arbitrary)
 - Separable filters are not orientation-sensitive

Mathematical Foundations

- Rotations and the Fourier Transform
- Radon Transform
- Rotation of Polynomials
- Directional Derivatives

Rotations and the Fourier Transform

Recall: Continuous-domain Fourier transform $\hat{f}(\omega) = \int_{\mathbb{R}^2} f(\boldsymbol{x}) \mathrm{e}^{-\mathrm{j} \boldsymbol{\omega}^\mathsf{T} \boldsymbol{x}} \, \mathrm{d} \boldsymbol{x}$

Spatial-domain rotations correspond to what in the Fourier domain?

$$\mathbf{R}_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$
 counterclockwise rotation

$$f(\boldsymbol{x}) \longleftrightarrow \hat{f}(\boldsymbol{\omega})$$
 $f(\mathbf{R}_{\theta}\boldsymbol{x}) \longleftrightarrow \hat{f}(\mathbf{R}_{\theta}\boldsymbol{\omega})$ (proof by change-of-variables)

Spatial-domain rotations correspond to Fourier-domain rotations

Radon Transform

The Radon transform of f(x,y) corresponds to all line integrals of f(x,y)

Notation: $\theta = (\cos \theta, \sin \theta) \in \mathbb{R}^2$

A line in \mathbb{R}^2 can be represented by all $oldsymbol{x} \in \mathbb{R}^2$ such that

$$\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x} = t \qquad \Leftrightarrow \qquad x \cos \theta + y \sin \theta = t$$

$$p_{\theta}(t) = \mathcal{R}\{f\}(\boldsymbol{\theta}, t) = \int_{\mathbb{R}^2} f(\boldsymbol{x}) \delta(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x} - t) d\boldsymbol{x}$$

How can we even compute this?

Theorem: Fourier slice theorem

$$\hat{p}_{\theta}(\omega) = \hat{f}(\omega \cos \theta, \omega \sin \theta)$$

Radon Transform

Steerability of Polynomials

Property: The rotated version of a 2D polynomial of degree p is a 2D polynomial of degree p. This implies that polynomials are "steerable".

Why is this useful?

How do we establish this property?

Key observations for establishing this property:

- A 2D polynomial of degree p is a linear combination of monomials of degree $n \le p$: $x^{k_1}y^{k_2}$ with $k_1+k_2=n$
- A rotation of a monomial of degree k yields a polynomial of degree k

A rotation of a polynomial is a polynomial of the same degree

Gradient and Directional Derivatives

Direction specified by $\boldsymbol{u} \in \mathbb{R}^2$ with $\|\boldsymbol{u}\|_2 = 1$ (unit vector)

First-order directional derivatives

$$D_{\boldsymbol{u}}f(\boldsymbol{x}) = \lim_{h \to 0} \frac{f(\boldsymbol{x}) - f(\boldsymbol{x} - h\boldsymbol{u})}{h}$$

$$= \boldsymbol{u}^{\mathsf{T}} \nabla f(\boldsymbol{x}) \qquad \longleftrightarrow \qquad j\boldsymbol{u}^{\mathsf{T}} \boldsymbol{\omega} \hat{f}(\boldsymbol{\omega})$$

$$= u_1 \frac{\partial f(\boldsymbol{x})}{\partial x} + u_2 \frac{\partial f(\boldsymbol{x})}{\partial y} \qquad \longleftrightarrow \qquad j(u_1 \omega_1 + u_2 \omega_2) \hat{f}(\boldsymbol{\omega})$$

$$m{n}(m{x}) = rac{
abla f(m{x})}{\|
abla f(m{x})\|_2}$$
 maximizes the directional derivative

Higher-Order Directional Derivatives

Direction specified by $\boldsymbol{u} \in \mathbb{R}^2$ with $\|\boldsymbol{u}\|_2 = 1$ (unit vector)

Directional derivative of order n

$$D_{\boldsymbol{u}}^{n} f(\boldsymbol{x}) = \underbrace{D_{\boldsymbol{u}} D_{\boldsymbol{u}} \cdots D_{\boldsymbol{u}}}_{n \text{ times}} f(\boldsymbol{x}) \qquad \longleftrightarrow \qquad (j \boldsymbol{u}^{\mathsf{T}} \boldsymbol{\omega})^{n} \hat{f}(\boldsymbol{\omega})$$

Exercise: Let $u_{\theta} = (\cos \theta, \sin \theta)$. Explicitly determine $D_{u_{\theta}}^2 f(x)$ as a function of θ and partial derivatives of f.

Directional Image Analysis

- Structure Tensor
- Implementation
- Examples of 2D Directional Analysis

Structure Tensor

• Structure tensor at location $oldsymbol{x}_0$

$$J(\boldsymbol{x}_0) = \int_{\mathbb{R}^2} w(\boldsymbol{x} - \boldsymbol{x}_0) \, \nabla f(\boldsymbol{x}) \nabla f(\boldsymbol{x})^\mathsf{T} \, \mathrm{d}\boldsymbol{x}$$

- -w(x): nonnegative symmetric "observation window" (e.g., Gaussian)
- \mathbf{J} : 2×2 symmetric matrix

Why are the eigenvalues real?

- Eigenvectors and eigenvalues: $\mathbf{J}\boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i$, i=1,2 with $\lambda_1 \geq \lambda_2$
- Interpretation for window centered at $oldsymbol{x}_0 = oldsymbol{0}$
 - Weighted inner product

$$\mathbf{J} = \langle \nabla f, \nabla f \rangle_w$$

e.g.,
$$[\mathbf{J}]_{1,1} = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial x} \right\rangle_w$$
 with $\langle f_1, f_2 \rangle_w = \int_{\mathbb{R}^2} w(\boldsymbol{x}) f_1(\boldsymbol{x}) f_2(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$

Energy of u-directional derivative

$$\|\mathbf{D}_{\boldsymbol{u}}f\|_{w}^{2} = \langle \boldsymbol{u}^{\mathsf{T}}\nabla f, \boldsymbol{u}^{\mathsf{T}}\nabla f\rangle_{w} = \boldsymbol{u}^{\mathsf{T}}\langle\nabla f, \nabla f\rangle_{w}\boldsymbol{u} = \boldsymbol{u}^{\mathsf{T}}\mathbf{J}\boldsymbol{u}$$

- Dominant orientation of a neighborhood: $u_1 = \operatorname{argmax}_{\|u\|=1} \|D_u f\|_w^2$

Eigenvalues: $\lambda_i = \boldsymbol{u}_i^\mathsf{T} \mathbf{J} \boldsymbol{u}_i$

Structure Tensor Implementation

Exercise: How would you implement the structure tensor?

- Structure tensor allows us to understand local features
 - Gradient "energy": $E = \text{trace}(\mathbf{J}) = J_{11} + J_{22}$
 - Orientation: $u_1 = (\cos \theta, \sin \theta)$ with $\theta = \frac{1}{2} \arctan \left(\frac{2J_{12}}{J_{22} J_{11}} \right)$
 - Coherency: $0 \le C = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} = \frac{\sqrt{(J_{22} J_{11})^2 + 4J_{12}^2}}{J_{22} + J_{11}} \le 1$
 - Harris corner index: $H = \det(\mathbf{J}) \kappa \operatorname{trace}(\mathbf{J})^2$ with $\kappa \in [0.04, 0.06]$

Examples of Directional Analysis

Orientation Estimation: Revisited

• **Problem:** Design a (real time?) system that can determine the orientation of a (linear) pattern placed at an arbitrary location in an image.

$$g_{\theta}(\boldsymbol{x}) = f(\mathbf{R}_{\theta}\boldsymbol{x})$$

$$\mathbf{R}_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

$$g_{\theta}(\boldsymbol{x}) \quad \stackrel{\mathcal{F}}{\longleftarrow} \quad \hat{f}(\mathbf{R}_{\theta}\boldsymbol{\omega})$$

We want to find the orientation in the Fourier domain with the least spread.

Problem Solution

Compute the "Fourier inertia" matrix (second-moment matrix)

$$\mathbf{M} = \begin{bmatrix} \iint \omega_1^2 |\hat{f}(\boldsymbol{\omega})|^2 d\omega_1 d\omega_2 & \iint \omega_1 \omega_2 |\hat{f}(\boldsymbol{\omega})|^2 d\omega_1 d\omega_2 \\ \iint \omega_2 \omega_1 |\hat{f}(\boldsymbol{\omega})|^2 d\omega_1 d\omega_2 & \iint \omega_2^2 |\hat{f}(\boldsymbol{\omega})|^2 d\omega_1 d\omega_2 \end{bmatrix}$$
$$= \begin{bmatrix} \langle j\omega_1 \hat{f}(\boldsymbol{\omega}), j\omega_1 \hat{f}(\boldsymbol{\omega}) \rangle & \langle j\omega_1 \hat{f}(\boldsymbol{\omega}), j\omega_2 \hat{f}(\boldsymbol{\omega}) \rangle \\ \langle j\omega_2 \hat{f}(\boldsymbol{\omega}), j\omega_1 \hat{f}(\boldsymbol{\omega}) \rangle & \langle j\omega_2 \hat{f}(\boldsymbol{\omega}), j\omega_2 \hat{f}(\boldsymbol{\omega}) \rangle \end{bmatrix}$$

Second-order moments measure spread

$$= (2\pi)^2 \begin{bmatrix} \langle \partial_x f, \partial_x f \rangle & \langle \partial_x f, \partial_y f \rangle \\ \langle \partial_y f, \partial_x f \rangle & \langle \partial_y f, \partial_y f \rangle \end{bmatrix}$$
 (fast algorithm via Parseval-Plancherel)

Which direction will have the least spread?

The direction of the smallest eigenvalue

Problem Solution (cont'd)

ullet Eigendecomposition of ${f M}$ gives us the axes of inertia

$$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}_1^\mathsf{T} \\ \boldsymbol{u}_2^\mathsf{T} \end{bmatrix} \mathbf{M} \begin{bmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{bmatrix}$$

 $\lambda_1 \geq \lambda_2$

 $oldsymbol{u}_1$: eigenvector in the direction of the **long** axis

 $oldsymbol{u}_2$: eigenvector in the direction of the **short** axis

- Pipeline:
 - 1. Compute the Fourier inertia matrix ${f M}$ via the fast algorithm
 - 2. Compute the eigendecomposition of ${\bf M}$ and store ${m u}_2$
 - 3. Return the angle of u_2

$$* \theta = \arctan \frac{u_{22}}{u_{21}}$$

Orientation Estimation in Action

• Image 1:

Measured angle: $25^{\circ} \pm 2^{\circ}$

Computed angle: 27°

• Image 2:

Measured angle: $44^{\circ} \pm 2^{\circ}$

Computed angle: 45.6°

Input

Energy

Orientation

Coherency

Color HSB representation

Hue: orientation
Saturation: coherency

Brightness: input

Keypoints detector (Harris Corner)

Steerable Filters

- Directional Pattern Matching
- Steerable Filters
- Derivative Filters

Directional Pattern Matching

Task: detection/enhancement of a given type of directional pattern Example: edge, line, ridge, filament, corner, etc.

- Measurement model (signal + noise): $f(x) = If_0(\mathbf{R}_{\theta}(x x_0)) + n(x)$
 - $f_0(x)$: template (e.g., elongated blob)
 - $oldsymbol{x}_0$: spatial location (unknown)
 - \mathbf{R}_{θ} : 2 × 2 rotation by θ (unknown)
 - *I*: intensity (unknown)
 - n(x): additive white Gaussian noise

Have we seen this problem before?

Maximum-likelihood estimator (rotating matched filter)

Define
$$h(\boldsymbol{x}) = f_0(-\boldsymbol{x})$$
 and $h_{\theta}(\boldsymbol{x}) = h(\mathbf{R}_{\theta}\boldsymbol{x})$

$$\widetilde{\theta}(\boldsymbol{x}) = \operatorname{argmax}_{\theta}(f * h_{\theta})(\boldsymbol{x})$$

$$\widetilde{I}(\boldsymbol{x}) = (f * h_{\widetilde{\theta}(\boldsymbol{x})})(\boldsymbol{x})$$

Why is this approach bad? computationally expensive

Steerable Filters

Definition: A 2D filter h(x), $x \in \mathbb{R}^2$ is sterrable of order M if and only if there exist "basis filters" $\varphi_m(x)$ and coefficients $a_m(\theta)$ such that

$$h_{\theta}(\boldsymbol{x}) = h(\mathbf{R}_{\theta}\boldsymbol{x}) = \sum_{m=1}^{M} a_m(\theta)\varphi_m(\boldsymbol{x})$$
 for all $\theta \in [-\pi, \pi]$

Why is this interesting/useful?

Fast implementation

Exercise: Prove that $h(\boldsymbol{x})$ is steerable $\Leftrightarrow \hat{h}(\boldsymbol{\omega})$ is steerable

Steerable Filters

Fig. 1. Example of steerable filters: (a) $G_1^{0^{\circ}}$ first derivative with respect to x (horizontal) of a Gaussian; (b) $G_1^{90^{\circ}}$, which is $G_1^{0^{\circ}}$, rotated by 90° . From a linear combination of these two filters, one can create G_1^{θ} , which is an arbitrary rotation of the first derivative of a Gaussian; (c) $G_1^{60^{\circ}}$, formed by $\frac{1}{2}G_1^{0^{\circ}} + \frac{\sqrt{3}}{2}G_1^{90^{\circ}}$. The same linear combinations used to synthesize G_1^{θ} from the basis filters will also synthesize the response of an image to G_1^{θ} from the responses of the image to the basis filters; (d) image of circular disk; (e) $G_1^{0^{\circ}}$ (at a smaller scale than pictured above) convolved with the disk (d); (f) $G_1^{90^{\circ}}$ convolved with (d); (g) $G_1^{60^{\circ}}$ convolved with (d), obtained from $\frac{1}{2}$ (image (e)) $+\frac{\sqrt{3}}{2}$ (image (f)).

Steerable Filter Design

Isotropic low-pass function (e.g., Gaussian): $\varphi(x,y)$

Subspace of steerable derivative-based templates:

basis functions

$$h(x,y) = \sum_{m=0}^{M} \sum_{n=0}^{m} b_{m,n} \frac{\partial^{m} \varphi(x,y)}{\partial x^{m-n} \partial y^{n}}$$

expansion coefficients

Exercise: Prove that this is steerable.

$$\varphi(\boldsymbol{x})$$
 isotropic $\Leftrightarrow \varphi(\boldsymbol{x}) = \varphi_{\mathrm{iso}}(\|\boldsymbol{x}\|_2) \Leftrightarrow \hat{\varphi}(\boldsymbol{\omega}) = \rho(\|\boldsymbol{\omega}\|_2)$

 $h(\boldsymbol{x})$ steerable $\Leftrightarrow \hat{h}(\boldsymbol{\omega})$ steerable

Steerable Filters for Edge and Ridge Detection

https://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Gradient-based edge detector

$$h(\mathbf{x}) = \varphi_1(\mathbf{x}) = \frac{\partial \varphi(\mathbf{x})}{\partial x}$$

$$\varphi_2(\mathbf{x}) = \frac{\partial \varphi(\mathbf{x})}{\partial y}$$

$$h(\mathbf{R}_{\theta} \boldsymbol{x}) = D_{\boldsymbol{u}_{\theta}} \varphi(\boldsymbol{x}) = \boldsymbol{u}_{\theta}^{\mathsf{T}} \nabla \varphi(\boldsymbol{x}) = \cos \theta \varphi_{1}(\boldsymbol{x}) + \sin \theta \varphi_{2}(\boldsymbol{x})$$

Second-order derivatives = ridge detector

$$h(\boldsymbol{x}) = \varphi_{20}(\boldsymbol{x}) = \frac{\partial^2 \varphi(\boldsymbol{x})}{\partial x^2}$$
$$\varphi_{02}, \varphi_{11}$$

$$h(\mathbf{R}_{\theta}\boldsymbol{x}) = D_{\boldsymbol{u}_{\theta}}^{2}\varphi(\boldsymbol{x}) = (\cos\theta)^{2}\varphi_{20}(\boldsymbol{x}) + 2\cos\theta\sin\theta\varphi_{11}(\boldsymbol{x}) + (\sin\theta)^{2}\varphi_{02}(\boldsymbol{x})$$

Ridge Detection Example

without steering

Canny Edge Detector Revisited

State-of-the-art edge detector

Edge point = local maximum of first directional derivative

- Smoothing
 - Gaussian filter: isotropic + separable (the only one)
 - Implementation: cascade of simple recursive filters
- Discrete gradient filters

Canny Edge Detector Revisited

Non-maximum suppression at x_0

$$oldsymbol{u} = rac{
abla f(oldsymbol{x}_0)}{\|
abla f(oldsymbol{x}_0)\|_2}$$
 : unit vector in gradient direction

if
$$\|\nabla f(\boldsymbol{x}_0)\|_2 \ge \|\nabla f(\boldsymbol{x}_0 \pm \boldsymbol{u})\|_2$$
 then $g(\boldsymbol{x}_0) = \|\nabla f(\boldsymbol{x}_0)\|_2$ else $g(\boldsymbol{x}_0) = 0$

Hysteresis threshold

Set of points: ${m k} \in {\mathbb Z}^2$

Two auxiliary edge maps:

- $E_{\text{low}} = \{ \boldsymbol{k} : T_{\text{low}} \leq g[\boldsymbol{k}] \leq T_{\text{high}} \}$
- $E_{\text{high}} = \{ \boldsymbol{k} : T_{\text{high}} \leq g[\boldsymbol{k}] \}$

Final edge map:

 $E = \{ k \in E_{\text{low}} \cup E_{\text{high}} : \text{ there exists a path that connects } k \text{ to } E_{\text{high}} \}$