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Directionality in Image Processing

e Importance of directional cues
— Edges, ridges, patterns, texture
— Visual perception is orientation-sensitive

— Neurons in the primary visual cortex have orientation selectivity

(Hubel and Wiesel, 1958)

e Invariant Processing and Feature Detection

— Invariant operators: Gradient magnitude, Laplacian, ...

e Computational challenges
— Selectivity to orientation
— Steerability (orientation can be arbitrary)

— Separable filters are not orientation-sensitive



Mathematical Foundations

e Rotations and the Fourier Transform
e Radon Transform
e Rotation of Polynomials

e Directional Derivatives



Rotations and the Fourier Transform
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Recall: Continuous-domain Fourier transform f(w) = f(x)e ¥ Tda
R2

Spatial-domain rotations correspond to what in the Fourier domain?
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Spatial-domain rotations correspond to Fourier-domain rotations



Radon Transform

The Radon transform of f(x,y) corresponds to all line integrals of f(x,y)
Notation: 8 = (cosf,sinf) € R?
A line in R? can be represented by all £ € R? such that

Olx =1t & xcosb +ysinf =t

B B T How can we even
po(t) = Z{f}(0,t) = - f(x)o(0 = —t)d compute this?

Theorem: Fourier slice theorem

A

Po(w) = f(wcosf,wsinb)



Radon Transform
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Steerability of Polynomials

Property: The rotated version of a 2D polynomial of degree p is a 2D
polynomial of degree p. This implies that polynomials are “steerable”.

Why is this useful? How do we establish this property?

Key observations for establishing this property:

— A 2D polynomial of degree p is a linear combination of monomials

of degree n < p: xF1y*2 with k;

kgzn

— A rotation of a monomial of degree k yields a polynomial of degree k

A rotation of a polynomial is a polynomial of the same degree



Gradient and Directional Derivatives

Direction specified by u € R? with ||u|l = 1 (unit vector)

e First-order directional derivatives

f(x) — f(x — hu)

= u'Vf(x) —r ju'wf(w)
= Uq 8];:) - o 8g;m) PRGN jurwy + u2w2)f(w)

Vi@
Vi)

maximizes the directional derivative







Higher-Order Directional Derivatives

Direction specified by u € R? with ||u|l = 1 (unit vector)
e Directional derivative of order n

D f(x) = DyDey oDy f(x) g (JUTw)nf(w)

N

n times

AN
~

Exercise: Let uy = (cosf,sinf). Explicitly determine D2, f(x)
as a function of 6 and partial derivatives of f.
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Directional Image Analysis

e Structure Tensor
e Implementation

e Examples of 2D Directional Analysis
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Structure Tensor

e Structure tensor at location x
T(zo) :/ w(z — 20) V f(2)V f(z)T da
RQ

— w(x): nonnegative symmetric “observation window" (e.g., Gaussian)
— J: 2 X 2 symmetric matrix Why are the eigenvalues real?
— Eigenvectors and eigenvalues: Ju; = \;u;, 1 = 1,2 with Ay > Ao
e Interpretation for window centered at &g = 0
— Weighted inner product J=(Vf£,Vw

ek i = (Gh o) with (i = [ w(e)hi(e)h@)de

— Energy of u-directional derivative

Do fl?, = W' Viu' Vi =u" (VVHeu =u'Ju

— Dominant orientation of a neighborhood: u; = argmaXHuH:lHDufH?u

Eigenvalues: \; = u] Ju;
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Structure Tensor Implementation

Exercise: How would you implement the structure tensor?

5 |
Ja smoothing Ji1(z, y)
filter

fz

f(z,y) fof N Ji1(z,y)
= cfa x m in >y) J : — 7

> Gradent ¢ 39 — > STENg (@, 9) Jia(z,y)

f Y smoothin
g
’@ > filter > Joo(z,y)

e Structure tensor allows us to understand local features

— Gradient “energy”: F = trace(J) = Ji1 + Joo

1 2J
— Orientation: u; = (cos6,sinf) with § = ~ arctan ( > >
2 Joo — J11

A1 — Ag _ V (Jao — J11)2 + 4J%,
A1+ Ao Joo + J11

— Coherency: 0 < (C = <1

— Harris corner index: H = det(J) — & trace(J)? with x € [0.04, 0.06]



Examples of Directional Analysis
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Orientation Estimation: Revisited

e Problem: Design a (real time?) system that can determine the orientation
of a (linear) pattern placed at an arbitrary location in an image.

AN

~

v

go(x) = f(Rex)
cosf) —sin 9}

sinf® cos6

o

go(z) " f(Rew)

We want to find the orientation in the Fourier domain with the least spread.

16



Problem Solution

e Compute the “Fourier inertia” matrix (second-moment matrix)

M =

(w1 f(w), jwi f(w))
I (jwa f (W), jwi f(w))

- JJwilf(@) dwr dws  [f wiws|f(w)
) fwawl,f(w)P dwy dws ffwglf(w) 2

(jwr f(w), jwa f(w))

(jwa f (W), jwa f(w)) _

Second-order moments measure spread

= (27)?

Which direction will have the least spread?

(0o, 04 f) (Ouf,0uf)
Oy f0:f) (Oyf 0uf)

’2 dwl dwg

dwl dwg

The direction of the
smallest eigenvalue

(fast algorithm via Parseval-Plancherel)
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Problem Solution (cont’d)

e Eigendecomposition of M gives us the axes of inertia

u1: eigenvector in the direction of the long axis
Uso: eigenvector in the direction of the short axis

e Pipeline:

U,

Uy

1. Compute the Fourier inertia matrix M via the fast algorithm

2. Compute the eigendecomposition of M and store us

3. Return the angle of us

U2
x 0 = arctan —

U21
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Orientation Estimation in Action

e Image 1. v
Measured angle: 25° + 2° _

Computed angle: 27°

e Image 2:

Measured angle: 44° + 2°
Computed angle: 45.6°
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Keypoints detector
(Harris Corner)



Steerable Filters

e Directional Pattern Matching
e Steerable Filters

e Derivative Filters
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Directional Pattern Matching

Task: detection/enhancement of a given type of directional pattern
Example: edge, line, ridge, filament, corner, etc.

Measurement model (signal 4+ noise): f(x) = I fo(Ry(x — x0)) + n(x)

— fo(ax): template (e.g., elongated blob)

— x(: spatial location (unknown)

— Ry: 2 x 2 rotation by 6 (unknown)

— I: intensity (unknown)

— n(x): additive white Gaussian noise Have we seen this problem before?

Maximum-likelihood estimator (rotating matched filter)

Define h(x) = fo(—x) and hy(x) = h(Ryx)

0(x) = argmax,(f * hg)(x)

~

I(z) = (f * hjp))(T) computationally expensive

Why is this approach bad?
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Steerable Filters (Freeman & Adelson, 1991)

Definition: A 2D filter h(x), € R? is sterrable of order M

if and only if there exist “basis filters” ¢,,,(x) and coefficients
a, (0) such that

ho(x) = h(Rox) = Y an(0)pm(x) forall 6 [—m,m]

Why is this interesting/useful?

e Fast implementation —><§l§)—

—> YPM —»@—

Exercise: Prove that h(x) is steerable < h(w) is steerable
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Steerable Filters

ofC R e

Fig. 1. Example of stecrable filters: (a) G’O first derivative with respect to

x (horizontal) of a Gaussian; (b) G"0 , which is G? , rotated by 90°. From
a linear combination of these two ﬁlters one can create G" which is an

bJ

arbitrary rotation of the first derivative of a Gaussian; (c) CGO , formed by

= GY 0% 4 ‘/_ 3 G997, The same linear combinations used to synthemze GY from
the basns ﬁlters will also synthesize the response of an image to GY from the
responses of the image to the basis filters; (d) image of circular disk: (e) G0

(at a smaller scale than plctured above) convolved with the disk (d); (t) C90°
convolved with (d); (g) G$°° convolved with (d), obtained fromi (image

() +¥2 (image (f)).

(Freeman & Adelson, 1991)
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Steerable Filter Design

Isotropic low-pass function (e.g., Gaussian): p(x,y)

Subspace of steerable derivative-based templates: basis functions

~ (:L’ y)

mOnO

expansion coefficients

Exercise: Prove that this is steerable.

p(x) isotropic & () = piso(||Z([2) & P(w) = p([|w]|2)
h(x) steerable < h(w) steerable




Steerable Filters for Edge and Ridge Detection

https://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

e Gradient-based edge detector Cos(lH)
9 |
pa(x) = %;m) —| P2 [~

h(Rox) = Dy, 0(x) = u) Vo(x) = cos b (x) + sin g (x)

e Second-order derivatives = ridge detector

(@) = pan() = LA

Y02, P11

f(z)

» ©20

2 cos(#) sin(0)

» P11

» P02

Dy, (¢ * f)()

Dy, (¢ * f)(z)

h(Rox) = D, ¢(x) = (cos0)*pao(x) + 2 cos f sin 011 (x) + (sin §)*poz ()
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Ridge Detection Example

2nd order

}
—» @Y1 —»@—
— E aM(H) —>
|
—>» PM —»@—
0" (x) = argmax {(hg * f)(x)}

4th order

without steering
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Canny Edge Detector Revisited

e State-of-the-art edge detector

Edge point = local maximum of first directional derivative

7 7

: modulus : Edge map
N smo_othlng | Gradient N Hysteresis
filter threshold
/o‘e h /
Steerable filter (Tiow, Thign)
e Smoothing
— Gaussian filter: isotropic + separable (the only one)
— Implementation: cascade of simple recursive filters
e Discrete gradient filters C[-ro1 fa (K, 1)
— — | 40 4| —s
62
~1 0 1
f(k,1) )

——— 0O 0 O0|———>

1 -1 -4 -1 fy(k,l)
62
1 4 1




Canny Edge Detector Revisited

e Non-maximum suppression at x

V f(x _ _ . . :
f@o) unit vector in gradient direction

V(o)

u

IV (@o)lla > V7 (o +w)l  then g(zo) = |V (o)l
else g(xp) =0

e Hysteresis threshold :.H

Set of points: k € Z?
 HaG

Two auxiliary edge maps: -
Eiow =1k : Tiow < glk] < Thign}

B Euich = {k : Thign < g[k]}

-inal edge map:

E ={k € Ejow U Ehign : there exists a path that connects k to Eyign }
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